
An Introduction to YADAS

Todd L. Graves∗

Los Alamos National Laboratory

April 18, 2003

1 What is YADAS? And where can I get it?

YADAS is a software system for statistical analysis using Markov chain Monte Carlo (MCMC). It is written
in Java and its source code is being distributed here (it continues to be developed). It was intended to be used
by statistical researchers, and as such, it has always been a goal to make YADAS extensible enough to handle
new models of forms not yet envisioned. Open source distribution is a vital part of the extensibility goal.
However, it is one thing to have a system with no limits to its extensibility, and another thing altogether
to have useful components available that make extensions easy. The BasicMCMCBond construct, with its
argument functions and a small set of likelihood functions, enables specification of most models without
requiring the user to write a great deal of new code. The MCMCUpdate interface allows users to update
the parameters in their MCMC algorithms in arbitrary ways and in particular MultipleParameterUpdates
make it easy to propose Metropolis–Hastings moves in arbitrary directions. Metropolis–Hastings moves
of multiple parameter simultaneously are powerful and intuitive ways to improve convergence of difficult
MCMC algorithms.

The emphasis of YADAS is on Metropolis and Metropolis-Hastings moves. This aspect of YADAS runs
contrary to the instincts of most Bayesians, whose first impulse is to implement Gibbs sampling using
exact conditional distributions. The choice to concentrate on the Metropolis algorithm is more than a
tribute to its Los Alamos origins, however. Avoiding Gibbs sampling frees analysts from the responsibility
of evaluating and coding full conditional distributions (instead, the analyst has only to specify the terms
in the unnormalized posterior distribution). Furthermore, the same algorithms that are used to compute
acceptance probabilities for simple Metropolis moves can also be used to compute acceptance probabilities
for more complex moves should they prove necessary. There is no incentive for analysts to force-fit their
prior knowledge into conjugate forms. The only downside we can think of is that Metropolis steps require
users to tune step size parameters, but this process is usually quite straightforward.

Many people are concerned with computation speed issues when they hear that YADAS is written in
Java. Java’s speed is underrated, and in any case, human time required to write an application is invariably
much more precious than computational time. Still, the general-purpose algorithms used in YADAS will
slow things down relative to special purpose code. If your problem is large enough that optimization with
respect to speed is critical, YADAS will not be a feasible solution, at least in the 2003 era of Moore’s Law.
But you knew that already.

Several other general–purpose MCMC tools are available. First, WinBUGS (Spiegelhalter, D. J., A.
Thomas, N. G. Best, and W. R. Gilks (1996), BUGS: Bayesian inference Using Gibbs Sampling, Version 0.5,
(version ii); see http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml) deserves special notice. Our feeling

∗Thanks to Vivian Romero and Yvonne Armijo, for their invaluable help.

1

is that if a problem can be handled by WinBUGS, then one should normally use WinBUGS to solve it.
However, we believe that researchers who develop new models will have an easier time extending YADAS’s
open source code than WinBUGS. Bassist (Toivonen, H., H. Mannila, J. Seppanen, and K. Vasko (1999),
Bassist User’s Guide For Version 0.8.3 ; see http://www.cs.helsinki.fi/research/fdk/bassist/) is another good
package; unfortunately, it appears that it is no longer being supported. It converts code written using a model
description language into C++ code. It has good extensibility since it can use C++ functions to define model
parameters, but it is limited in its capability for generating different sorts of MCMC algorithms. HYDRA
(Warnes, G. R. (2002), HYDRA: a Java library for Markov Chain Monte Carlo, Journal of Statistical
Software, Volume 07 Issue 04, 03/10/02) is also written in Java and distributed open-source. It does not
seem to have any limits in its extensibility, but neither does it provide classes that make it easy to specify
new models (one has to define the posterior distribution from scratch) or to define new MCMC algorithms,
although several special algorithms are included. Flexible Bayesian Modeling (FBM) is a set of UNIX based
tools for many sorts of Bayesian regression models. (Neal, R. (2001), Software for Flexible Bayesian Modeling
and Markov Chain Sampling; see http://www.cs.toronto.edu/ radford/fbm.software.html).

Finally, YADAS is an acronym for “yet another data analysis system”, and is pronounced as if it were a
contraction of “yada yada yada”. We do not anticipate any compliments on our sparkling wit.

In this documentation, we will begin by reviewing Markov chain Monte Carlo ideas in §1.1, and by
reviewing object-oriented programming in Java in §1.2. We introduce the key components in any YADAS
analysis in §2, and discuss how we normally deal with poor mixing in MCMC in §3. We present a number
of examples in §4, each of which illustrates an advanced topic in YADAS.

1.1 Review of MCMC ideas

It is not clear to me that YADAS is going to be useful to someone unfamiliar with the basic ideas of Markov
chain Monte Carlo (MCMC), but if you fall into that category, a good reference is A Gelman, JB Carlin,
HS Stern and DB Rubin, Bayesian Data Analysis, CRC Press, 1995. Still, we will motivate design decisions
made in YADAS here by describing MCMC in a particular way.

MCMC is a method of numerical integration: if the information (derived from prior knowledge and from
experimental data) about an unknown parameter θ is contained in a posterior distribution f(θ) with respect
to some measure µ, the integral I =

∫

g(θ)f(θ)dµ(θ) provides a point estimate of the quantity g(θ). If
this integral cannot be estimated in closed form, one obtains a sequence θ1, . . . , θB of dependent samples
from the distribution f , and estimates I by Î = B−1

∑B

b=1 g(θb). To obtain the dependent sequence, one
uses MCMC, in which one generates a Markov chain whose stationary distribution is f and which mixes as
efficiently as possible (in the sense that successive samples are as uncorrelated as possible). To define an
MCMC algorithm, one needs a method of obtaining the next sample θb+1 from the current sample θb. A
useful idea is the Gibbs sampler, which divides θ into several components θ1, . . . , θk, begins by sampling a
new value of θ1 from its conditional distribution given the values of the other components.

The Metropolis–Hastings algorithm, on the other hand, consists of a proposal distribution T (θ, θ ′) ac-
cording to which a new value θ′ is proposed given the new current value θ. This proposal can either be
accepted, in which case the chain moves to θ′, or it can stay at θ for another iteration. To ensure that the
resulting Markov chain has the correct stationary distribution f , the probability that the move to θ should
be accepted can be taken to be

f(θ′)

f(θ)

T (θ′, θ)

T (θ, θ′)
.

Several things can be seen from this acceptance probability formula. First, one only needs to be able to
evaluate f(θ) up to a multiplicative constant, because ratios of f ’s evaluated at two different values are
what is of interest. Second, a useful special case (the Metropolis algorithm) is the case where the proposal
distribution is reversible (T (θ, θ′) = T (θ′, θ)). Finally, one can write very general software by developing an

2

alphabet for evaluating f ’s, and another alphabet for constructing proposal densities T and evaluating ratios
of those proposal densities. This is the approach taken in YADAS. The most common sort of proposal is,
as in Gibbs sampling, to divide θ into components (where each component is one-dimensional real valued).
θ′ is then constructed from θ by generating a random standard Gaussian variable Z, and adding skZ to the
kth component of θ. Here sk > 0 is a tunable step size parameter, and the algorithm consists of one move
of this sort for each component. This sort of proposal is reversible, so it can be called a Metropolis step. As
we will detail later, different problems call for more specialized proposal distributions, in particular when f
induces parameters to be highly correlated with one another, or when certain of the parameters have discrete
or mixed continuous-discrete distributions.

1.2 Some notes on object-oriented programming in Java

On the other hand, probably most people interested in YADAS have little to no experience in object-oriented
programming, in Java or otherwise. Some good references are C. S. Horstmann and G. Cornell, Core Java 2:
Volume 1- Fundamentals and Core Java 2: Volume 2- Advanced Features, and B. Eckel, Thinking in Java.

Object-oriented programming consists of creating and manipulating objects. Objects are data structures
that can also contain functions (called methods) as part of their definition. The description of what an
object and all objects like it have in common is called a class, and examples of objects in that class are called
instances of the class. Classes can be organized in class hierarchies, where a subclass of another class (a
superclass) is similar to the superclass but is typically more specific: it can have additional data or methods
in its definition, and it can define its methods in ways different than its superclass. (Unlike in some other
object-oriented languages, classes in Java can have only one superclass). Another important concept is the
interface: an interface is a collection of methods, and a class is said to implement that interface if it contains
definitions of all these methods. One way that object-oriented programming is powerful is that one can place
into an array several objects that belong to a general superclass or that implement the same interface, and
then one can operate on those objects using methods common to all of them. Each object will behave in its
own way in response to those methods. Java also contains primitive data types such as integers, reals, and
characters, and these are not objects.

In Java, objects (and primitives) must be first declared, which sets aside storage space for them before
actually defining their initial values, and then they can be initialized, in which they are given initial values.
Suppose Myclass is the name of a class an one wishes to define an instance of this class named Myobject.
Declaration of Myclass appears as Myclass Myobject; in Java code. After this, one can include a statement
Myobject = new Myclass(); to initialize the object. What has actually been done here is a call to the
constructor method of the Myclass class; this method constructs a new instance of the class. Most often,
some arguments will appear insides the parentheses in the call to the constructor method. new is a very
important keyword in Java.

Now suppose there is a method called run() defined in the Myclass definition. This method can be
called for the Myobject object using Myobject.run(). Depending on the method definition, arguments may
also appear inside the parentheses.

Java is strongly typed, so one cannot liberally mix integers with real numbers as in S-Plus. A potentially
annoying consequence of this in YADAS is that all arguments to likelihood functions must be real valued,
even binomial data and sample sizes. Arrays start at zero, as in C, rather than at one. All statements must
end with semicolons.

Java is a compiled language; the compiler is called javac and it must be run to convert .java files into
.class files, which can then be run using the java command.

3

1.3 Installation instructions

First, you need to have Java (version 1.2 or later) available on your system. If you don’t, download it from
java.sun.com; the Standard Developer’s Kit (SDK) is sufficient.

Then, download the YADAS source code in yadas.tar.gz or the .jar file. Uncompress and untar the
source code file into the directory you want to keep your YADAS code. The files should be in a directory
called direc/gov/lanl/yadas/; the value of direc is your choice. Another way of saying this is that YADAS
code is part of a package called gov.lanl.yadas. The standard for naming Java packages is to reverse one’s
web URL.

On Unix systems, you will often need to edit your .cshrc file or analogous file to change your CLASSPATH.
(I understand that Linux systems have a similar file with a different name.) It should contain ’.’ and the
directory direc in which you place gov/lanl/yadas, or the .jar file. For example, my own .cshrc file
contains a line

setenv CLASSPATH .:/home/tgraves/Java:/home/tgraves/Java/MCMC:/home/tgraves/Java/colt.jar

indicating that any .class files in /home/tgraves/Java or /home/tgraves/Java/MCMC will be available from
wherever I run a Java application; I have also downloaded the COLT software package (which I recommend
to you as well: http://hoschek.home.cern.ch/hoschek/colt/index.htm) and use their .jar file in colt.jar. I
actually keep gov/lanl/yadas inside /home/tgraves/Java. The syntax for defining a classpath environment
may vary depending on your version of Unix.

The Windows analogue is the AUTOEXEC.BAT file, which also needs to have a classpath definition. For
example, if Java was installed to d:

j2sdk1.4.0 and you placed the yadas.jar file in the directory d:

Java, the following line should appear in your AUTOEXEC.BAT file:

SET CLASSPATH=.;d:\\j2sdk1.4.0\\lib;d:\\Java\\yadas.jar

The ’.’ at the beginning is necessary if you want to run any classes in your current directory. Alternatively,
if you downloaded the YADAS source code and placed the gov subdirectory inside d:

Java, a potentially appropriate line in AUTOEXEC.BAT is

SET CLASSPATH=.;d:\\j2sdk1.4.0\\lib;d:\\Java

It is also allowable to have both the Java directory and the yadas.jar jar file in your classpath. I don’t
remember exactly why I needed to list the Java SDK library in my Windows version and not in my Unix
version. I have no experience using Java on a Macintosh, OS X or otherwise, but I hope to remedy this
omission before long.

When writing your own YADAS applications, you need to put the line import gov.lanl.yadas.* near
the top of the file.

To run any of the examples obtained from the YADAS web site after you have unzipped and untarred the
Examples.tar.gz, move to the appropriate numbered subdirectory of Examples. If the directory does not
already contain the .class file for your desired application (e.g. OneWayAnova.class), type the command
javac OneWayAnova.java at the command line (either DOS or Unix). If the .class file is there, you can
run the application with the command java OneWayAnova 10000, if OneWayAnova is the desired application

4

and if you wish to run 10000 iterations. Among the things that can go wrong: javac or java may not be in
your path, and the current directory (.) may not be in your classpath.

1.4 Alternative interfaces that may appear in the future

It is currently standard to run YADAS applications by writing Java code. Recently, we ran our first ap-
plication from Jython (see www.jython.org), a Java implementation of the scripting language Python (see
www.jython.org). Beyond Python’s power, Jython also makes it quite easy to utilize Java code. At the
moment, the Jython approach contains few usability advantages over the Java approach, but it is an area
of further work. We would also like to develop interfaces from R, probably through the omegahat project
(see www.R-project.org or www.omegahat.org) and MATLAB. If you are interested in contributing to these
efforts, please contact yadas@lanl.gov.

2 The basics

On the following pages we will discuss the fundamental concepts in YADAS: the objects and methods that
appear in essentially all applications. The first example we will discuss is a one-way ANOVA example, where
normally distributed data Yij have means µi and known standard deviation σ (1 ≤ i ≤ I, 1 ≤ j ≤ J);
the µi are normally distributed with mean θ and known standard deviation δ, and θ has a flat prior on
(−∞,∞). This problem is straightforward to analyze with Gibbs sampling or alternatively one can even
find the posterior distribution analytically. However, it also illustrates many of the fundamental concepts of
YADAS. It would be helpful to view the source code for OneWayAnova.java, and possibly also the data files,
while reading these sections. We begin by introducing the classes we use to import data from input files,
DataFrame (§2.1) and ScalarFrame (§2.2). Understanding these classes is necessary for reading my YADAS
code. We then introduce the MCMCParameter (§2.3) class: every unknown quantity that gets updated in the
course of an MCMC algorithm is an MCMCParameter. Next we introduce the BasicMCMCBond class, which is
responsible for most of the power and flexibility of the model specification capabilities of YADAS. At that
point we will understand the one-way ANOVA example and be able to work many other simple examples.

2.1 DataFrame

Most YADAS applications are written with no hard-wired constants: instead, all inputs are stored in files.
DataFrame is the most common class used to import data from a file. An example of a input file that can
be read into a DataFrame is as follows:

6

y|group

r|i

0.5|0

0.8|0

0.3|1

0.4|1

1.2|2

0.9|2

The first line is the number of lines of data in the file. The second line is a list of variable names, separated
by pipes (|). The third line contains information about the type of the variable (’r’ for real-valued, and ’i’

5

for integer; ’s’ for string is also possible, but as of this writing is rarely used). The variable types are also
separated by pipes. The fourth through last lines contain the data: in this example, the first column of data
contains the values of the real-valued ’y’ variable, while the second column of data contains the values of the
integer-valued ’group’ variable. Suppose this content is in the file data.dat. These data can be read into a
YADAS application using the code

DataFrame d = new DataFrame (‘‘data.dat’’);

This code defines a new data frame called d. Once this is done, one can access the y variable using
d.r(‘‘y’’), or the group variable using d.i(‘‘group’’). This is similar to d$y or d$group in (S-Plus).

All the variables in a DataFrame have the same length, so an application will often require multiple
DataFrames. For example, in OneWayAnova.java, a DataFrame d contains one row of data for each data
point, and another DataFrame d2 contains one row of data for each level of the grouping variable. The
scalar variables could also be stored in a DataFrame, with a single row of data, but scalar data files tend to
be easier to read when stored in a ScalarFrame (see §2.2) instead.

Let d be a DataFrame.

• d.r(‘‘realname’’) returns an array of real numbers whose values are stored under the name “real-
name” in d.

• d.i(‘‘intname’’) returns an array of integers whose values are stored under the name “intname” in
d.

• d.length() returns the integer length of the variables in d.

• d.r(1.5) returns an array of real numbers, all of whose values are 1.5. The length of this array is the
same as the length of all the variables in d.

• d.i(9) is analogous, but it returns an array of integers.

• d.u() returns an array of integers of the same length as d whose first element is zero, the second
element is one, and so on up to the last element whose value is the length minus one.

2.2 ScalarFrame

The file Ex1scalars.dat used in the one-way ANOVA example is an example of a ScalarFrame, a tool
used in YADAS to read input files consisting of scalars. It is also possible to store scalars in DataFrames,
but in large problems with many scalars, these files can get hard to read. Each line in a file to be read by
ScalarFrame contains a variable name and a value for that variable, separated by a pipe. For example, the
file Ex1scalars.dat begins with

theta|246.5

thetamss|3

sigma|2

sigmamss|1

delta|2

All variables in ScalarFrames are assumed at first to be real-valued. If d0 is a ScalarFrame in a YADAS
application, one can extract the variable named theta by calling d0.r(‘‘theta’’). This method returns an
array of real numbers of length one, not a real scalar (Java makes a distinction). If one wants a ScalarFrame

to store an integer parameter named n, one can define the parameter in the same way as one would a real
parameter, and then call a command such as d0.i(‘‘n’’). Again, this is an integer array of length one.

6

2.3 MCMCParameter

After reading the contents of input files into DataFrames and ScalarFrames, the next step is to define
MCMCParameters. Parameters are the quantities that are updated in the course of the MCMC algorithm. Any
quantity whose posterior distribution is a target of the MCMC algorithm must be stored in an MCMCParameter

or one of its subclasses, and sometimes it is also appropriate to define constant parameters. To initialize a
parameter, one needs an array of (real) initial values, an array of (real) step sizes that will most often be
used in Metropolis steps, and a (string) file name. For example, the definition of the random effects µ in the
one-way ANOVA example is

mu = new MCMCParameter (d2.r("mu"), d2.r("mumss"), direc + "mu"),

Here d2 is the DataFrame containing the data in the file Ex1mu.dat. The variable called mu in this file stores
the initial values for the mu parameter, and the variable called mumss stores the step sizes for this parameter.
Note that the parameter contains three components (i.e. there are three main effects µ0, µ1, and µ2) and
three step sizes, one for each component. direc contains a directory name in which the input files are kept
and to which the MCMC output will be sent; in particular, the samples of the mu parameter will be sent to
a file called mu.out.

Later we will discuss the MCMCUpdate interface, according to which all the ways of updating parameters
are defined. For the moment, MCMCParameters are the simplest example of updates. Contained in the
definition of the MCMCParameter class is the general componentwise Metropolis algorithm. In other words,
when the update() method of a parameter is called, YADAS loops over the components of the parameter.
For each component, it proposes a Gaussian move centered at the current value of the component and with
that component’s step size as the standard deviation of the proposal distribution. This move is then accepted
with the appropriate Metropolis probability calculated from the ratio of the posterior distribution for the
new and old values of the parameters, and YADAS moves on to the next component. To be precise, denote
by θ−i the set of current values of all unknown parameters in the model excepting θi. When the algorithm
attempts to update θi, the proposed new value θ′i is constructed by θ′i = θi + siZ, where si is the step size
for θi and where Z ∼ N(0, 1). If p denotes the (possibly unnormalized) posterior density function, written
with two arguments (θi and θ−i), this move is accepted with probability p(θ′i, θ−i)/p(θi, θ−i). Otherwise θi

remains unchanged for this iteration of the algorithm, and in either case we move on to trying to update the
next component of θ.

MCMCParameters are not the most powerful or challenging pieces of YADAS. Don’t let the need to specify
step sizes scare you away; YADAS provides output regarding acceptance rates for the Metropolis steps, and
it is usually straightforward to tune the step sizes to attain acceptance rates of roughly 40%, which will often
correspond to good mixing of the chain.

YADAS also contains the capability of updating parameters on the log scale: a MultiplicativeMCMCParameter
θi obtains its proposal through the mechanism θ′i = exp(siZ)θi, where Z is standard Gaussian. In some cases
it may seem natural that a parameter’s variation is multiplicative rather than additive, although it is not
entirely clear that this is ever necessary. Try changing the definition of delta in the one-way ANOVA exam-
ple to make it a MultiplicativeMCMCParameter (i.e. change the line delta = new MCMCParameter... to
delta = new MultiplicativeMCMCParameter...), recompile, play with the step size, and explore whether
mixing is improved. Clearly only positive parameters (or, rarely, negative parameters) should be defined as
MultiplicativeMCMCParameters.

Similarly, LogitMCMCParameter updates a probability parameter by generating the proposal additively on
the logit scale. We have found LogitMCMCParameters useful in reliability applications in which a probability
parameter is close to one or zero. For example, see §4.4 for an analysis of system reliability.

7

2.4 BasicMCMCBond: how to express a model

One of the key characteristics of the software architecture of YADAS is the BasicMCMCBond structure. We
think that this construct makes it as easy as possible to define most statistical models. It also makes it easy
to make small changes to existing analyses, for example by adding another level to a hierarchy or adding a
prior distribution to a quantity that had previously been fixed. It is also very easy to change distributional
forms and link functions.

In YADAS, an MCMCBond is a term in the unnormalized posterior distribution (MCMCBond is actually an
interface). One computes the unnormalized posterior density function by multiplying all the bonds together:
for example, think of the prior density function as one bond, and the likelihood function as the second bond.
More generally, many parameters can have independent prior distributions, each of which can be captured in
a bond, and multiple sources of data with different likelihoods can be encoded in other bonds. The purpose
of a bond, then, is to compute a desired function of unknown parameters.

Nearly all problems can be handled using only one type of bond, the BasicMCMCBond. A BasicMCMCBond

consists of three parts:

1. an array of parameters,

2. an array of ArgumentMakers, which are objects that compute functions of these parameters, and

3. a Likelihood function, which takes the output of the argument functions and returns the value of the
log-likelihood for that term in the posterior.

YADAS is set up to use as few Likelihood functions as possible (e.g. Gaussian, Gamma, Binomial, and so
forth) and to put most of the variation between problems into ArgumentMakers.

At this stage you should refer to the file OneWayAnova.java. In this problem, the posterior contains four
bonds: the data bond (or likelihood), and the priors for the random effects, the data standard deviation,
and the random effect standard deviation.

2.4.1 Likelihoods

For two reasons, the name Likelihood is unfortunate: first, it is used in prior terms as well as likelihood
terms; and second, it actually computes the log-likelihood function rather than the likelihood. However,
the construct is very useful regardless of its poorly chosen name. A small number of Likelihoods enable
the bulk of analyses. For example, consider the Gaussian likelihood (see the code in Gaussian.java). A
likelihood’s vital characteristic is its lik method, which takes a two-dimensional array of reals as input and
returns a single real. In Gaussian, the first “column” in the input array is the vector of “data” (call them
yi), the second column is the vector of means (call them µi), and the third column is the vector of standard
deviations (call them σi). The likelihood computes the function

∑

i

{− log(σi) − (yi − µi)
2/2σ2

i }.

In Gaussian, the function requires the same number of data points, means, and standard deviations, and
most Likelihoods behave similarly, even though in many problems, all the means or standard deviations are
identical.

“Constants” are typically computed in Likelihood functions. This leads to some loss in performance,
but that is the price of generality. In the Gaussian example, if one is considering a change to the mean

8

parameter, the term involving − log(σi) is the same for the current parameter set and for the proposed
parameter set, and will just be canceled out, but we compute it anyway. A more extreme example is if the
standard deviation is known, in which case most Bayesians will think of this term as a constant and will
recoil at the idea of computing it and subtracting it from itself. In today’s analysis, a term may be a function
of constants, but in tomorrow’s analysis, some of those constants may be unknown parameters. Computing
these constant terms allows us to get by with a single Gaussian likelihood function. (Obviously, you should
feel free to write your own GaussianFixedSD likelihood function that refrains from computing the constant
term if it makes you feel better.)

Here are the likelihood functions that you are likely to need. All of these with the exception of
MultivariateNormal take rectangular arrays. We describe the meanings of the columns of the array. The
output of the lik method is the sum, over rows, of the function applied to the elements in each row.

• Gaussian. Three arguments: data y, mean µ, and standard deviation σ. Computes − log σ − (y −
µ)2/2σ2. Again, we stress that the Gaussian distribution is parameterized in terms of its standard
deviation.

• Gamma. The three arguments are data y, shape parameter α, and scale parameter θ, so that the mean
of y is αθ.

• Poisson. The two arguments are the data y and the mean λ. A source of confusion for Poisson and
Binomial is that all likelihood functions expect all their arguments to be real, not integer, valued.
This holds even for Poisson data, and Binomial data and sample sizes. On the other hand, it is legal
to use noninteger values for these should you feel the urge.

• Binomial. The three arguments are, in order, the number of successes x, the sample size n, and the
probability p. See the note for the Poisson distribution for a warning.

• Beta. The three arguments are the data y and the two parameters a and b. The mean of y is a/(a+ b).

• StudentT. This distribution takes four arguments: the data y, the mean µ, the scale parameter σ, and
the number of degrees of freedom ν. For large ν, the standard deviation is approximately σ. Note that
this includes the Cauchy distribution, when ν = 1.

• Uniform. The first argument is the data y, the second argument is the lower limit a, and the second
argument is the upper limit b. The uniform likelihood can be used to state that a parameter is bounded
between two values, for example in interval censoring problems.

• MultivariateNormal. We have experimented with some multivariate normal applications, but we have
not bundled the code with this distribution because it uses third party software for matrix manipulation.
The MultivariateNormal functionality should appear in a version of YADAS soon.

• NegativeBinomial. The negative binomial distribution can be used to model count data that are
overdispersed relative to the Poisson distribution; see McCullagh and Nelder (1985, §6.2.3 in the second
edition) and Graves and Picard (2002). The first argument is the data y, the second argument is the
mean µ, and the third argument is an index parameter φ. The variance of y is equal to µ(1 + φ)/φ.

• Weibull. The Weibull takes three arguments: data y, scale parameter σ, and index parameter φ. We
also supply a separate class Weibull3 that allows an additional argument (the left endpoint of the
distribution).

• Dirichlet. The Dirichlet distribution takes two arguments: the vectors of “data” (the probabilities)
and the exponents in the Dirichlet prior.

• InverseGamma. Because conjugacy is no advantage in YADAS, we do not anticipate that the In-
verseGamma family will be used often. However, it is here: the arguments are the data, shape and
scale parameters.

9

• Hypergeometric. For sampling from finite populations, the hypergeometric distribution is available.
Its arguments are the number of successes in the sample, the size of the sample, the size of the
population, and the number of successes in the population.

2.4.2 ArgumentMakers

The set of Likelihoods described earlier are powerful because of the use of ArgumentMakers to transform
parameters into arguments to the likelihoods. These are functions that act as if they take one or several
parameters as inputs, and return an array to be fed into a Likelihood function. In principle, if our
multidimensional parameter is θ, this allows us to use the Gaussian likelihood to specify that f0(θ) ∼
N(f1(θ), f2(θ)

2), for essentially any choices of f1 and f2 and for many choices of f0. Naturally, these
functions can access data as well as parameters. The three simplest and most commonly used argument
functions are ConstantArgument, IdentityArgument, and GroupArgument.

• ConstantArgument ignores all the parameters that it is allowed to use to construct its output and
instead returns the same constant vector each time it is needed. These are used for including data or
fixed prior parameters in a bond. A ConstantArgument can be defined in several ways:

– new ConstantArgument (double[] x) defines an argument function which returns the array of
double precision numbers given in x. For example, in the one way ANOVA example, the data y
are placed into a Gaussian likelihood function in this way.

– new ConstantArgument (double x, int n) will return an array of length n, each of whose
entries is x.

– new ConstantArgument (double x) will return an array of length one, whose single entry is x.

• IdentityArgument is also very trivial. Suppose that the array of parameters in the bond is {theta,
mu, sigma}. new IdentityArgument (0) reads the values of the 0th parameter (theta) and re-
turns them unchanged. new IdentityArgument (2) does the same with the 2nd parameter, and
this is sigma because arrays start at zero. Note the vital difference between IdentityArguments and
ConstantArguments: IdentityArguments read the values of parameters, and these can change in the
course of the algorithm.

• GroupArgument is less trivial: its most common use is to take a parameter with a small number
of components and lengthen it into a longer argument for a likelihood function. In the one way
ANOVA example, each data point is assumed to have the same error standard deviation σ. The
sigma parameter has only a single component, but when YADAS computes the Gaussian likelihood, it
needs one of these standard deviations for each data point, and GroupArgument makes the appropriate
array. A GroupArgument is defined by an integer serving the same role as in IdentityArgument,
and by an array of integers I usually call an expander. This array plays the role of a subscripting
vector in S-Plus. For example, suppose the parameter mu has three entries (µ0, µ1, µ2). Suppose in
a one-way anova problem that the first two data points belong to the first group, the next two data
points belong to the second group, and the last two data points belong to the third group. Then, in
S-Plus, one can define a vector group <- c(1, 1, 2, 2, 3, 3), after which mu[vec] yields a vector
(µ0, µ0, µ1, µ1, µ2, µ2) that corresponds nicely with the data vector y in that sum((y-mu[vec])^2) is a
residual sum of squares. Check out the examples of GroupArguments in the one-way ANOVA example.
Again, the index of the first element in an array in Java is zero, so in YADAS, the group vector
would be (0, 0, 1, 1, 2, 2) instead of (1, 1, 2, 2, 3, 3). A non-obvious use of GroupArguments is to place an
autoregressive relationship on a vector of parameters: in particular, θi ∼ N(θi−1, σ

2)(i = 1, . . . , n − 1)
can be defined using one GroupArgument with expander (1, 2, . . . , n − 1) and another GroupArgument
pointing at the same parameter but with expander (0, 1, . . . , n − 2).

YADAS does not yet have the capability to apply an arbitrary function to generate the argument that plays
the role of the data in a Likelihood. In general, if one wants to specify that f(θ) ∼ G, one needs to include

10

the Jacobian of the transformation in the posterior, but this is not yet possible in general using YADAS, so
at this stage you should not use an Argument function to generate the data argument unless its Jacobian is
one.

2.5 Example 1: One-Way Anova

Here is the source code for a simple example. We have already discussed most of the example. See §1.3 for
instructions for running the examples.

2.6 Example 2: FunctionalArgument

Our second example is also a one-way ANOVA example, but with the difference that the error standard
deviation is now proportional to the mean: Yij ∼ N(µi, {γµi}

2). Here γ is called a relative standard
deviation, or RSD. See the source code in the file OneWayAnovaRSD.java, and/or click on the buttons below.
Only a small change to the YADAS application code is necessary to analyze this model, but it does require
us to introduce the FunctionalArgument, which is very powerful but not particularly natural to use. It
allows us to specify that arguments to likelihood functions are arbitrary functions of the parameters. The
user includes the function definition (in this case, g(µ, γ) = |γµ|) in the definition of the argument. In the
example, the bond contains two parameters, µ and γ. A FunctionalArgument is defined by five things:

• An integer that indicates how long the argument should be: for the example, there needs to be one
standard deviation for each data point;

• An integer that indicates how many parameters are contained in the bond (in this case, two);

• An array of integers that indicate which of the parameters need to be “expanded” before being sent
through the function. In this case, the zeroth parameter mu and the first parameter gamma are both
the wrong length, so this array consists of both 0 and 1;

• A two-dimensional array of “expanders”, much like those in GroupArgument. Here, we use the same
group variable that we used in the mean argument to expand mu again, and we use the vector of all
zeroes to expand gamma, just as in the previous example;

• a Function. In the example, the definition of the function is:

new Function () { public double f(double[] args) {

return Math.abs(args[0] * args[1]); }}

The only part of this definition that needs to change for other applications is the part between the
inner set of brackets (starting with return and ending with the semicolon). This code explains how
to take the values in the expanded parameters and operate on them to get the output of the argument
function. The function is called once for each data point. The ith time it is called, args[0] contains
the value of the first parameter (mu) for the ith data point, and args[1] contains the value of the
second parameter (gamma) for the ith data point. The function definition, then, says that the function
multiplies mu by gamma and takes the absolute value for good measure, although both mu and gamma

should be positive anyway.

FunctionalArgument has many uses; for example, it has been used to allow users to parameterize the gamma
and beta distributions by their mean and variance. It can also be used to construct linear models, though
if these linear models become too large, LinearModelArgument, described in the next section, is handier.
A potential annoyance is that FunctionalArgument can force users to define parameters that are more
naturally thought of as data (they do not get updated).

11

2.7 Example 3: LinearModelArgument

Somewhat like FunctionalArgument, LinearModelArgument is a YADAS construct which is difficult to use
at first but which is powerful when one becomes accustomed to it. This class reads several columns from a
DataFrame, interprets some of the columns as covariates and some as group labels for categorical covariates,
adds up everything to get the linear predictor, and optionally runs it through a link function to get a
transformed linear predictor. It is thus capable of calculating any quantity of the following form: the ith
value is h(

∑J

j=0 βjXij+
∑K

k=0 ηgk(i)), where the βs and the ηs are allowed to be unknown parameters, whereas
the Xs are data. Needless to say, this class can be used in generalized linear models as easily as ordinary linear
models. Also, linear models are not restricted to modeling the mean of data; we can also have regression
relationships in variances or other parameters. The most general constructor for LinearModelArgument

takes the following arguments.

• A DataFrame that contains the covariates and/or group labels. The covariates must be labeled as
real-valued, while the group labels must be integers. The DataFrame is allowed to contain real-valued
columns that will not be used in generating the linear model (for example, the same DataFrame will
usually contain the response variable in the regression). As of this writing, the frame can contain
integer variables that do not appear in the linear model, but they must be listed in the frame after the
variables that do.

• An integer that indicates whether or not the linear model contains an intercept (0 if no, 1 if yes).

• An integer indicating which of the parameters in the bond is the vector of regression coefficients. This
integer behaves similarly to integers found in the GroupArgument and IdentityArgument discussions.
Denote this parameter by β = (β0, β1, . . .). The first element in the vector is the intercept, if there is
one. (We will still denote the first element by β0, whether or not there is an intercept.) The remaining
elements will be multiplied by real-valued covariates.

• The fourth argument is an array of integers whose purpose it is to map the real-valued variables in the
DataFrame to the regression coefficients β so that they can be multiplied by each other. Suppose this
array is {0, 1, 3}. If there is no intercept in the model, β0 is to be multiplied by the zeroth real variable
in the DataFrame, β1 is to be multiplied by the first, and β2 is to be multiplied by the third. If there
is an intercept, β1 goes with the zeroth real variable, β2 with the first, and β3 with the third. In other
words, all the elements of the β vector must be used, while one can ignore real variable columns in the
data frame.

• The fifth argument is another array of integers, and its purpose is to map categorical variables to
parameters in the bond. Each categorical variable requires its own parameter. A categorical variable
is represented in the data frame by an array of integer group labels; for example, suppose that the
parameter is denoted by η and the group labels are {0, 0, 1, 1, 2, 2}; this means that the six values of
the linear predictor contain, respectively, the terms η0, η0, η1, η1, η2, and η2. Suppose that this array
of integers is {0, 4, 1}. This means that the zeroth integer-valued variable in the data frame is mapped
to the zeroth parameter, the first variable is mapped to the fourth parameter, and the second variable
is mapped to the first parameter. In other words, one cannot skip integer columns in the data frame,
but one can ignore parameters. There is an asymmetry in the interpretations of the arrays that define
the real covariates and the categorical covariates; I hope it will not be too confusing.

• Finally, one can optionally include a (inverse link) Function as in FunctionalArgument to transform
the linear predictors.

Example 3, LinearModelExample, illustrates how to define a linear model. Click on the buttons to view
the source code and data if you wish. In this example, we have two real covariates plus an intercept and
two categorical predictors. The model is

Yi ∼ N(β0 + β1x1i + β2x2i + γg1(i) + γg2(i), σ
2),

12

where all three βs, all γs, and all δs have normal prior distributions, and σ has a Gamma prior distribution
(no hierarchical models anywhere). For the data included with the examples, there are two γs and three δs,
and the true values of the parameters are β0 = β1 = 0, β2 = 2,−γ0 = γ1 = 4, δ0 = −2, δ1 = 0, δ2 = 2, and
σ = 0.5. If you run this example with the data and prior parameters given with the examples, the MCMC
will mix poorly as β0 is highly negatively correlated with γi + δj for any i or j. (Otherwise, the results will
be “right.”) At this point in the tutorial, it is too soon to introduce measures that will improve mixing in
this problem; MultipleParameterUpdates with OneUpOneDownPerturbers should be useful, and we are at
work on a general update step for linear models.

2.8 Writing your own Likelihoods

The supplied collection of Likelihoods should be sufficient for most analyses, but it is also not difficult to
write your own. The most straightforward way to begin is with a supplied likelihood function, and modify
it to compute another log-likelihood function. For example, to create a Likelihood called MyLikelihood,
open (for example) Gamma.java, replace Gamma after public class by MyLikelihood, and eventually save
the result in a file called MyLikelihood.java after changing the code inside the file.

A Likelihood object contains two methods, both called compute. The second method, which takes an
array of integer indices as an argument in addition to the two-dimensional array of doubles is deprecated,
and you need not worry about changing it. The first compute method takes a two-dimensional array of
numbers and processes them to output a log density value. Normally each row in the array is processed
individually, and the results are added together (on the log scale); an exception is AttritionLikelihood, a
model for randomly generated permutations which will be discussed later.

A technique the author has made use of is the judicious use of negative infinities. If a given piece of data
has density zero at the associated parameter values, my Likelihoods will often return java.lang.Double.NEGATIVE INFINITY,
since −∞ is the log of zero. This will have the property that transitions outside the support of the posterior
distribution will be rejected (provided that the chain starts inside the support: failing to do so is a fairly
common error). This is one way of preserving the positivity of variance parameters and so forth: it is more
elegant to prevent parameter values with zero posterior probabilities from being proposed, but this technique
works.

Before the new likelihood function can be used, it must be compiled (e.g. using javac MyLikelihood.java)
to create a file called MyLikelihood.class. This class must be visible in your classpath.

2.9 Writing your own ArgumentMakers

It is likely that you will have the occasion to write your own ArgumentMaker functions before needing
to write any new Likelihoods. The definition of an ArgumentMaker is a class that contains a method
called getArgument that takes a two-dimensional array (not necessarily rectangular) of doubles as input
and returns a one-dimensional array of doubles. The input array will be the values of all the parameters
in the bond, and the output will be the values to send as one of the arguments to the Likelihood. The
ArgumentMaker’s constructor can accept several inputs if constants or constant vectors are useful in cal-
culating the argument. For example, expanders in GroupArgument are inputs to the constructor of that
class. Covariates in LinearModelArgument, in the form of a data frame and indicators of which columns
correspond to numerical or categorical predictors, are inputs to that class. Another common technique is to
send an integer to the constructor that indicates which parameter plays a certain role. The simplest example
is in the IdentityArgument class: its constructor takes a single integer as an argument, and this integer
points to the parameter whose value will be returned unchanged.

13

3 Enhancing mixing

Inevitably, frequent users of YADAS will run into situations where the default algorithms based on compo-
nentwise random walk Metropolis–Hastings steps are inadequate for generating MCMC algorithms that mix
appropriately well. While the theorems guarantee that the limiting distribution of the chain is the desired
posterior distribution, the consecutive samples may be too highly correlated for efficient inference. The
most common reason for this is that two or more parameters are highly correlated, so that those parameters
cannot move freely individually.

Other MCMC practitioners may try other techniques for improving mixing. For instance, reparameteri-
zation so that parameters are more nearly uncorrelated can work, and Gibbs sampling experts will often try
Gibbs updates of vectors of parameters (in which one samples a vector of parameters from their conditional
distribution given the values of the other parameters; see C. Liu, 2003, “Alternating Subspace-Spanning
Resampling to Accelerate Markov Chain Monte Carlo Simulation”, to appear in JASA, for a recent ap-
proach). Parameter expansion data augmentation (JS Liu and Y Wu (1999) ”Parameter expansion for data
augmentation”, JASA 94, 1264-1274) is a further exciting approach. These techniques are possible within
YADAS in the sense that you can write all the necessary code and add it to your analysis. The approach that
we follow is more in the spirit of YADAS: making additional Metropolis-Hastings moves in which proposals
attempt to change multiple parameters simultaneously.

3.1 MCMCUpdate

MCMCUpdate is a YADAS interface consisting of four methods, the most important of which is update().
(The others, accepted(), updateoutput(), and finish(), are related to acceptance probability output
and it is not necessary to define them to be anything other than empty methods.) Calling the update()

method of an object implementing the MCMCUpdate interface will attempt to modify one or more of the
parameters in the algorithm. You have already seen examples of MCMCUpdates, since each parameter is itself
an update. What this means is that if theta is an MCMCParameter with (say) K components, calling the
method theta.update() loops over the components of theta, attempting to change the kth component
of theta from its current value θk to θk + skZk, where Zk is a standard Gaussian random variable. Each
componentwise move is accepted if the ratio of the posterior distribution evaluated at the new value, to
the posterior distribution evaluated at the old value, is greater than a uniform(0, 1) random variable. A
YADAS analysis includes an array of objects implementing the MCMCUpdate interface. The first attempt for
an analysis generally constructs this array by listing the MCMCParameters in the analysis.

In the remainder of this section, we discuss another class implementing the MCMCUpdate interface, the
MultipleParameterUpdate class. (Other examples of update classes are presented in the next section:
ReversibleJumpUpdate in §4.2, and FiniteUpdate in §4.1.) Before concluding it is necessary to use
nonstandard updates, it makes sense to tune the Metropolis step sizes as well as possible. YADAS applica-
tions generally send acceptance rate information to standard output. Returning to Example 1, the one way
ANOVA example contains four MCMCUpdates, mu, theta, sigma, and delta. For our example data file, mu has
three components and the others are all one-dimensional. After I ran this application for 11000 iterations,
the following was sent to standard output:

Update 0: 0:4266 1:4279 2:4322

Update 1: 0:5571

Update 2: 0:3809

Update 3: 0:4104

These are the numbers of accepted Metropolis moves out of 11000 attempts: ’Update 0’ refers to mu, which
has three components, and hence three distinct update steps. Metropolis changes to the values of mu were

14

accepted respectively 4266, 4279, and 4322 out of 11000 attempts. Acceptance rates for theta were higher,
while they were lower for sigma. These acceptance rates can be used to tune the step sizes. We shoot for
acceptance rates of 40% and are normally quite happy with anything within 15% of that in either direction.
A. Gelman, G. O. Roberts, and W. R. Gilks (“Efficient Metropolis jumping rules”, in Bayesian Statistics
5, 1995) did theoretical work in a univariate normal problem showing that acceptance rates of 15-50% were
near optimal. Whether or not this theory can be extended to problems with more dimensions, we appear to
get good results through aiming for these acceptance rates.

However, sometimes acceptance rates remain low even when the step size is small in comparison to the
posterior standard deviation of the parameter. Time series plots of parameters can be helpful in diagnosing
this problem, and normally the explanation is that the parameter is highly correlated with some other
parameter. This is where MultipleParameterUpdates come in to YADAS analyses of difficult problems.

3.2 MultipleParameterUpdates

The MultipleParameterUpdate class is itself simple to use: the only arguments to its constructor are an
array of MCMCParameters that the update will attempt to move simultaneously, and an object implementing
the Perturber interface that indicates the function to apply to the parameters to generate the proposed move.
As a simple example, suppose that the posterior distribution of interest is a bivariate normal distribution
with high correlation: θ1 and θ2 have mean zero, Var(θi) = σ2

i , and Corr(θ1, θ2) = ρ. Alternating between
Metropolis (or Gibbs) moves to θ1 and to θ2 may lead to a slow mixing Markov chain. However, large
changes to both parameters can be obtained by adding a Metropolis move in which the new proposed value
(θ′1, θ

′
2) satisfies θ′1 = θ1 + sZ and θ′2 = θ2 + s(σ2/σ1)Z, where Z is a standard normal random variable

independent of everything and where s > 0 is an appropriate (and, in YADAS, easily tunable) step size.
In other words, MultipleParameterUpdates deal with correlation by adding a Metropolis or Metropolis-
Hastings step in which we attempt to move the parameters in a direction of high, if not necessarily exactly
maximal, variability. These directions can most often be intuited by considering the form of the posterior
distribution: in fact, in most cases in our experience, a single term in the posterior distribution is the culprit.

The difficult part of adding code for a MultipleParameterUpdate to an analysis is writing the code for
the perturber or finding an appropriate existing perturber (the library of perturbers is not organized, and I
find myself writing perturbers with the same functionality multiple times). We will illustrate the issues with
some examples.

3.3 Example 4: NewAddCommonPerturber

In this example, we consider another one-way ANOVA problem in which the data variance is considerably
larger than the variance of the random effects.

For illustrative purposes, we use the “wrong” parameterization. It is well known (see, e.g. GO Roberts
and SK Sahu, JRSSB, 1997, 59:291-317) that the model Yij ∼ N(α + θi, σ

2), θi ∼ N(0, σ2
θ) mixes well in

the Gibbs sampler under these conditions on the variances, whereas the model Yij ∼ N(µi, σ
2), µi ∼ N(θ, δ2)

mixes poorly. We work with the poorly mixing model in order to demonstrate how the MultipleParameterUpdate
fixes the mixing difficulties. The first half of the MCMC iterations for this example are performed with the
special update, and the last half include it. A time series plot of the iterations of µi or θ will illustrate
the difference. The mixing problem arises because the µi’s are highly correlated with each other and with
θ. In fact, one can add the same constant to each of these parameters without changing the value of the
µi ∼ N(θ, δ2) bond, and since δ is small, this is the dominant bond in some sense. We propose a move that
leaves the value of this bond fixed and allows the other bonds (since the prior for θ is flat, the only relevant
bond is the data bond) to decide whether the move should be accepted. This move adds the same random
Gaussian random variable to θ and to all of the µi. Hence, it is called a NewAddCommonPerturber.

15

To define a NewAddCommonPerturber, one supplies two arguments to its constructor: a two-dimensional
array of integers that should have the same shape as the array of parameters being updated, and a one-
dimensional array of real step sizes. The integers should range from zero up to one less than the length of
the step size array. A NewAddCommonPerturber defines as many update steps as there are values in the step
size array. The first update step identifies all zeroes in the array of integers, generates a random Gaussian
variable with standard deviation equal to the first step size, and adds this random variable to the parameter
entries in the same position as the zeroes in the integer array. If the step size array has more than one
element, the second step does the same thing with all the ones in the integer array and the second step size.
For example, suppose that the parameters being updated are µ, θ, and γ, where µ has length eight, θ has
length four, and γ has length two. If the integer array is

{{0, 0, 0, 0, 1, 1, 1, 1}, {0, 0, 1, 1}, {0, 1}},

and the step size array is {1.5, 0.5}, the first proposed update will take Z1 ∼ N(0, 1), and let µ′
i = µi +

1.5Z1(i = 0, 1, 2, 3), θ′i = θi + 1.5Z1(i = 0, 1), and γ′
0 = γ0 + 1.5Z1. After it is decided whether or not to

accept this move, the second proposed update will be to take Z2 ∼ N(0, 1) and let µ′
i = µi + 0.5Z2(i =

4, 5, 6, 7), θ′i = θi + 0.5Z2(i = 2, 3), and γ′
1 = γ1 + 0.5Z2.

NewAddCommonPerturbers are likely to be useful in a wide variety of hierarchical models, and if the
hierarchical model has more levels, more than one special update may be necessary. NewAddCommonPerturber
is not as useful as it might be; for example, it doesn’t allow single parameter values to be changed in more
than one step.1 The older class AddCommonPerturber allows this but is harder to use.

3.4 Example 5: NewOneUpOneDownPerturber

In this example, the model suffers from poor identifiability in the sense that the likelihood is unaffected by
a parameter transform in which we add a constant to one parameter and subtract the same constant from
other parameters. To be precise, we are working with a one-way ANOVA problem again, this time using
the non-centered parameterization: the data yij are distributed as N(µ + αi, σ

2), where µ has a flat prior,
αi ∼ N(aα, b2

α), where aα, bα, and σ are all known. This is a stripped down example to illustrate the issues
clearly.

When we run this example with the MCMC algorithm consisting only of componentwise random walk
Metropolis updates of µ and α, the algorithm performs poorly because each of the αi’s is highly negatively
correlated with µ. We solve this problem with a NewOneUpOneDownPerturber, which proposes a change to
the parameters as follows: let Z ∼ N(0, 1), and let µ′ = µ + sZ, α′

i = αi − sZ for all i. The constructor to
NewOneUpOneDownPerturber accepts two arguments: first, a two-dimensional array of integers, and second,
an array of real-valued step sizes. The interpretation of the two-dimensional array is much the same as in
NewAddCommonPerturber: the zeroth attempt at updating the parameters adds sZ (where s is the zeroth
step size) to all the coordinates in the zeroth parameter that are identified with a zero in the zeroth column in
the array of integers and subtracts sZ from all the coordinates in the first parameter that are identified with
zeroes in the first column of the array of integers. The next update looks for ones in the two-dimensional
array, etc. In the NoncenteredANOVA example, all of the parameters (µ and all αi) are being updated
together, so all of the entries in the two-dimensional integer array are zero.

3.5 Writing your own Perturbers

Partly because I have been unable to get my Perturber libraries organized, if you want to use a MultipleParameterUpdate
in your own application, there is an excellent chance that you will have to write your own class that imple-
ments the Perturber interface. This interface consists of three methods.

1Alert readers will observe that it is in fact possible to do this if the array of parameters contains the same parameter

multiple times.

16

• perturb() takes as inputs a two-dimensional array of real numbers and an integer, and returns nothing
(although it does change the values inside the array of reals). The array represents current values of
some of the parameters, and the purpose of the perturb() method is to change them to proposed
values. The integer pertains to the case where the update class needs to generate several successive
update steps; the integer communicates how far along on this sequence the algorithm has gotten
(starting with zero, of course). The only restrictions on what changes the perturb() method makes
to the array’s values are that it should be possible to define an appropriate jacobian() method as
described below.

• numTurns() takes no arguments and returns an integer, the number of separate update steps that this
perturber is responsible for generating. It is common for a MultipleParameterUpdate to consist of
only one such step, in which case numTurns() returns 1. Otherwise, a Perturber will often require
an array of step sizes as inputs, and numTurns() will return the length of this array. The whoseTurn

variable that is an argument to perturb() ranges from zero to numTurns() - 1.

• jacobian() takes no arguments and returns the Hastings adjustment T (θ′,θ)
T (θ,θ′) in the notation of §1.1.2

In the case of additive Gaussian proposals to the parameters as in NewAddCommonPerturber and
OneUpOneDownPerturber, this ratio is equal to 1.0. Another case I use is ScalePerturber, which
is like the additive adjustments but on the log scale: the proposal consists of several parameters being
multiplied by r = exp(sZ), where s > 0 is a step size and Z is standard Gaussian. In this case,
jacobian() returns r raised to the power of the number of parameters being changed. The num-
ber that jacobian() returns will often be computed inside perturb() and stored inside an instance
variable.

I make a big deal about how YADAS saves users from having to evaluate full conditional distributions,
so it is disappointing that the Hastings ratios require user evaluation. I have much experience in getting the
ratio wrong, and it is most often quite obvious from the MCMC output that the algorithm is not stationary.

3.6 Writing your own Updates

YADAS’s open source distribution and unrestrictive architecture make it possible for you to augment it
with any update method you choose. For example, it is possible for special applications to include Gibbs
updates of some parameters in the event that complete conditional distributions are available and Metropolis
algorithms are for whatever reason not working. The only Gibbs update we have seen fit to implement is
the case of a parameter that takes on finitely many values; see §4.1 below.

4 Advanced topics and examples

In this section we discuss several “advanced topics” that are used only in special-purpose YADAS applications
(though some have potential to attain more widespread usage). First, we present how to update parameters
that take on finitely many values. Next, we discuss reversible jump MCMC and apply it to an example
where we test a hypothesis that two binomial proportions are equal. Then we present an example related to
auto racing that has an unusual likelihood function, and finally we study the reliability of a complex system
based on information at the component, subsystem, and full system level.

2It is probably also another example of a poorly named method or class in YADAS.

17

4.1 FiniteUpdate, and Example 6: BetaBinomialExample

In this section we learn about how to update parameters that take on finite numbers of values. Clearly, it
does not work to add a Gaussian step to such a parameter. Instead, we address this problem by sampling
from the full conditional distribution of the discrete parameter. (This is as yet the only example where
we have allowed YADAS to be polluted with sampling from full conditional distributions.) YADAS’s in-
frastructure for computing ratios of posterior distributions serves it well in this situation. Suppose f(x, θ)
is the unnnormalized posterior distribution evaluated at a discrete-valued parameter x and the remaining
parameters θ. If the current value of x is i and we are contemplating changing the value of this parameter
to j, YADAS is set up to compute the ratio rj = f(j, θ)/f(i, θ). If we compute this ratio for all values of j,
a sample from the full conditional distribution of x chooses x = j with probability proportional to rj . f(i, θ)
is wastefully computed several times, but one should worry about this only in rare circumstances.

It is quite easy to use the FiniteUpdate class: one simply inserts a FiniteUpdate into the update array.
The constructor of FiniteUpdate requires only the name of the parameter and an array of integers with
the same number of elements as the parameter. The integers list how many possible values each element of
the parameter can take on. (We assume that the possible values of the ith element of the parameter are
{0, 1, . . . , ni − 1}, in which case ni should be placed inside the integer array.)

We illustrate the use of FiniteUpdate with a simple example in which we sample from the beta-binomial
distribution. This example was inspired by G. Casella and EI George, (1992) “Explaining the Gibbs Sam-
pler”, The American Statistician 46:3:167-174. This is not a statistical problem in that there is no
data: the situation is that a probability y is sampled from a Beta(a, b) distribution, and conditionally on
y, x is sampled from a binomial distribution with sample size n and probability y. We estimate the joint
distribution of (y, x) using MCMC: we alternate between updating y and x, updating y when it is its turn
using random walk Metropolis, and updating x by sampling from its full conditional. As noted in the code,
the code has a few annoying features: the input file must contain a real variable n to use as an argument
to the Binomial Likelihood, and it also must contain an integer variable ni = n + 1 to tell FiniteUpdate
the number of possible values of x. A sanity check is that the marginal distribution of y turns out to be the
beta distribution with the supplied parameters.

Note that the restriction that the possible values of the parameter are zero up to some maximum is in
fact not a restriction at all, because such parameters are ideally suited for use as subscripting variables in
ArgumentMakers.

In some cases, the number of possible values of a finite-valued parameter is large, so it may be inefficient to
entertain all possible values when updating the parameter. In this case, IntegerMCMCParameter can be used
to propose a Gaussian-like step that proposes a discrete move. The constructor of an IntegerMCMCParameter

looks exactly like that for an ordinary MCMCParameter, so the step size is the standard deviation of the
Gaussian that is sampled before being converted to an integer. (The proposal is θ′ = θ + sgn(Z){1 +
floor(|sZ|)}, where Z is standard normal.) If you use this option, there must be a likelihood function that
prevents θ from taking on disallowed values, using negative infinities.

4.2 ReversibleJumpUpdate, MixtureBond, and Example 7: BinomialHypoth-

esisTest

One of the most challenging sitations when implementing an MCMC is if a parameter has a mixture distri-
bution and is most naturally thought of as living in one of two different spaces. A simple example arises in
variable subset selection in regression: a slope parameter may be given a prior distribution that is a mixture
of a normal distribution and a point mass at zero. In some cases it will be possible to update such a param-
eter using its full conditional distribution, but in other cases this distribution is not tractable, so that we
want to use some method more like Metropolis-Hastings. Reversible jump MCMC, as presented by PJ Green

18

(“Reversible Jump MCMC Computation and Bayesian Model Determination”, 1995, Biometrika 82 711-732)
demonstrates how to do this. The algorithm attempts to jump between spaces, and the Metropolis-Hastings
acceptance probability is a function of the methods of proposing new parameter values so that the stationary
distribution of the algorithm is as desired.

The ReversibleJumpUpdate can be thought of as a transition matrix between models, and an array of
functions specifying how to propose a new value of the parameters in a new model, as a function of which
model was the old model. For this to work, it is necessary to adjust acceptance probabilities in such a
way that the algorithm’s limiting distribution is the desired posterior distribution. The arguments to the
constructor are

• an array of parameters whose values might be changed by the reversible jump update;

• an integer that determines how many models we are mixing over (denote this integer by M);

• an integer that indicates which of these models is the initial state for the MCMC (this should be
consistent with the initial values of the parameters, and its possible values are 0, 1, . . . ,M − 1);

• a one-dimensional array of transition probabilities between the models. This array will be interpreted
as a square M ×M matrix whose (i, j) coordinate is the probability that if the current model is model
i, the next model proposed will be model j;

• an array of JumpPerturbers. A JumpPerturber is much like a Perturber. Both are interfaces,
and JumpPerturber extends Perturber by adding a density() method. This method computes the
probability density of the proposed new value of the parameters.

• a String indicating a directory where output specific to the reversible jump update should go. This
output includes acceptance probabilities for the purpose of Rao-Blackwellization, but has not been
used enough to be standard.

To be precise, suppose the current model is model i and the current value of the parameter is θ. To
generate a new value of the parameter, we first choose a new model according to the probabilities in the
transition matrix: suppose model j is chosen; the probability that this happens is (say) Aij . The proposed
new value θ′ of the parameter is chosen from density Tij(θ, θ

′). Denote the unnormalized posterior by f .
The acceptance probability for the reversible jump move is

f(θ′)

f(θ)

AjiTji(θ
′, θ)

AijTij(θ, θ′)
.

This is “just” the Metropolis-Hastings rule, but specialized to include the possibility of jumping across
models. (The JumpPerturbers evaluate the densities Tij(θ, θ

′).)

In the following example, we perform a Bayesian hypothesis test for equality of two probabilities p1 and
p2. We have binomial samples xi ∼ Binomial(ni, pi) for i = 1, 2. We make it into a hypothesis testing
problem by putting a mixture prior on (p1, p2): with probability λ, p1 = p2 and their common value has
a beta prior distribution, while with probability 1 − λ, the pi’s are exchangeable, each with a (possibly
different) beta prior distribution. To follow this example, it is necessary to understand the MixtureBond

class. A MixtureBond is essentially an array of BasicMCMCBonds, one bond for each model that we are
mixing over. While a BasicMCMCBond requires an array of parameters, an array of ArgumentMakers and
a Likelihood, a MixtureBond requires two-dimensional arrays of parameters and ArgumentMakers and an
array of Likelihoods. In addition, a MixtureBond requires a single ArgumentMaker that computes the
mixing probabilities for each of the models. This is implemented in a slightly strange way: when this
ArgumentMaker is applied to the parameters for the mth model, it should generate an array whose mth
coordinate is the probability of the mth model. The simplest way to do this is with a ConstantArgument, but
we wanted to enable the case where the mixing probabilities are themselves being estimated. We emphasize

19

that a mixture bond is used for computing weighted averages of bonds. Suppose x1, x2, . . . xn may come
from several densities fm, and each of these distributions has probability πm. A single MixtureBond can be
used to compute

∑

m

πm

∏

i

fm(xi),

but not to compute
∏

i

∑

m

πmfm(xi).

The latter can be computed using n MixtureBonds. In other words, a single MixtureBond mixes the dis-
tributions in such a way that all of the data points come from the same bond. You may want the other
interpretation, and I intend to produce such a class as soon as possible. In short, one should expect some
transience in the code for mixture distributions in YADAS.

To get (finally) to the example, the single unknown parameter p contains both the probabilities p1 and
p2. The MixtureBond contains the mixture distribution and is used in a somewhat nonstandard way here. If
βab denotes the beta density with parameters a and b, the mixture bond is intended to compute the quantity

(1 − λ)βab(p1)βab(p2)I{p1 6=p2} + λβab(p1)I{p1=p2}.

The AreTheyEqualArgument does the work here: if p1 = p2, this argument generates the array {0, λ}, while
if p1 6= p2, the output is the array {1−λ, 0}, since the first model is the p1 6= p2 model. This is a nonintuitive
trick but it will presumably be common in mixture models that require ReversibleJumpUpdates (depending
on the parameter, one of the models may have zero probability).

Finally, the parameter p is updated using reversible jump. The matrix (a00 = 0.75, a01 = 0.25, a10 =
0.25, a11 = 0.75) indicates that if p1 6= p2, the probability is 0.25 that the proposed new value of p will
feature p1 = p2. Also, if p1 = p2, the next proposed value will set them unequal with probability 0.25. The
four JumpPerturbers operate as follows.

• If the p’s are unequal and the proposed new values are also to be unequal, we add a different Gaussian
random walk step to each on the logit scale.

• If the p’s are unequal and the proposal is to equalize them, the proposal is deterministic and equal to
a weighted average of the two p’s. The weights are set in the input file.

• If the p’s are equal and are to be made unequal in the proposal, we again add different independent
Gaussians to the p’s on the logit scale.

• If the p’s are equal and they should be kept equal in the proposal, we update their common value by
adding a Gaussian on the logit scale.

The standard output from a ReversibleJumpUpdate is a natural extension of the usual acceptance
probability output; this time it shows the number of acceptances and trials from each model to each model.
I obtained the following output:

Update 0: 0 -> 0: 1073 / 1551; 976 / 1551;

0 -> 1: 443 / 496;

1 -> 0: 442 / 2200;

1 -> 1: 4761 / 6753;

This means that when the algorithm moved from model 0 to model 0, the first p was changed successfully
1073 out of 1551 times, while the second p was changed 976 out of 1551 times. The acceptance probability
was quite high when we proposed a move from p1 6= p2 to p1 = p2, but low in the opposite direction.

20

Theoretical results about ideal acceptance rates, values of the transition matrix and choice of the
JumpPerturbers would be of great interest and probably not easy to achieve.

4.3 Example 8: AttritionLikelihood

I could hardly create a web site about YADAS without including my favorite example, especially since it was
in fact the motivating example for its development. For those who are uninterested in the subject matter,
this example still highlights some of the power and versatility of YADAS and especially the BasicMCMCBond

construct.

Suppose that one wishes to analyze data that represent several permutations of subsets of individuals.
Our example (see T. Graves, C. S. Reese, and M. Fitzgerald, “Hierarchical Models for Permutations: Analysis
of Auto Racing Results”, to appear in Journal of the American Statistical Association; until then find it
at http://madison.byu.edu/racing/racing.html) is the finishing orders of drivers in a set of stock car races.
We wished to address several questions using these data, including how to construct overall measures of
driver ability, whether some race tracks had results that were more predictable than others, and to what
extent drivers’ abilities differed from track to track. To this end let θij denote the ability of driver i in
race j. The probability distribution of the finishing order in race j depends on the parameters θij in the
following way. First, the last place finisher in the race is chosen from the participants with probability
proportional to λij = exp(−θij). Next, the second-to-last place finisher is chosen from the remaining drivers
with probability proportional to the λij , and the process is continued until two drivers i1 and i2 remain,
and driver i1 finishes second with probability λi1j/(λi1j + λi2j). (This formulation is equivalent to drawing
independent exponential random variables for each driver with mean exp(θij), and setting the finishing order
to be decreasing in the exponential variables.) Models of interest for the θ’s include

• the case where a driver’s ability θij = θi is the same in every race,

• driver abilities are changing over time,

• some tracks are more predictable than others in the sense that they intensify the importance of driver
abilities, i. e. θij = θiφT (j), where T (j) denotes the track of race j,

• track-driver interactions are important, i. e. θij = θi + ΩiT (j).

The key construct for analyzing any of these models is the AttritionLikelihood. Its task is to accept
an array of driver ability parameters θij and an array of track predictability parameters φj (these last are
generally equal to one) and return the log of the value of the likelihood

J
∏

j=1

Ij
∏

i=1

λπj(i),j

(

i
∑

k=1

λπj(k),j

)−1

.

Here J is the number of races, Ij is the number of drivers in race j, πj is defined so that πj(k) = i means
that driver i finished in kth place in race j, and λij = exp(−θijφj). To do this, its constructor requires two
arrays of integers: an array of race identifiers (ranging from zero to one less than the number of races) and
an array of finish position identifiers (ranging from one to Ij). The special thing about this Likelihood is
that it breaks away from the usual structure in which each “row” in the two-dimensional array is handled
separately (e.g. yi ∼ N(µi, σ

2
i)). To calculate the contribution to the likelihood of the tenth place finisher

in the first race, one needs to know the identities of the first nine finishers as well.

The code for this application is in AttritionAnalysis.java. This application analyzes the model
in which driver abilities do not depend on the race, and the track predictability parameters are identi-
cally equal to one. The model specification is completed by assuming that driver abilities θi ∼ N(0, b2

θ)
3,

3Actually the code contains a parameter aθ to symbolize the mean of the θis, but this parameter is fixed at zero.

21

where bθ has a Gamma (exponential, in fact) distribution. Convergence is improved through the use of a
MultipleParameterUpdate with a ScalePerturber that attempts to rescale simultaneously the θi and bθ.
Note that one of the richer models for θij can be obtained by using different ArgumentMakers: the desire
to be able to fit several models with minimal changes to the application code motivated the design of the
ArgumentMaker class.

The input files contain data from the 2002 NASCAR Winston Cup season, which we obtained from
http://www.nascar.com. The file attw02.dat contains four integer columns: the race ID and finishing
position ID to be used as inputs to the AttritionLikelihood constructor, and the identifiers of the driver
and track. One good feature of the decision to require users to begin their input files with the number of
lines of data is that after the last line, users can add comments: here we list the correspondence between
driver IDs and driver names, and between track IDs and track names. The interpretation of the first line of
data, “0|1|86|6”, is that in the first (zeroth) race, the first place finisher was driver 86, Ward Burton, and
the race was held at track 6, Daytona. (This race was the 2002 Daytona 500.) The file mssw02.dat contains
Metropolis step sizes for the driver ability parameters θi; we have found that it usually works well to use 0.2
multiplied by the square root of the number of races in which the driver participated.

4.4 Example 9: GenericSPSystem

We move from the most frivolous example yet implemented in YADAS to one that is a key example of the
analyses we work on at Los Alamos. This example involves estimating the reliability of a system, where
the system is composed of subsystems and components, test data is potentially available on components,
subsystems, or the entire system, and expert opinion is also available at any of those levels. This methodology
is discussed in VE Johnson, TL Graves, MS Hamada, and CS Reese, “A Hierarchical Model for Estimating
the Reliability of Complex Systems,” in Proceedings of Seventh Valencia Conference on Bayesian Statistics,
though here we have changed the system structure and the data.

The problem is depicted by the graph in the Figure on this page. The interpretation of the graph is as
follows: the bottom row of nodes (nodes three through seven) are leaf nodes and they represent components
that can succeed or fail independently. The statistical model assumes that the success probabilities (reliabili-
ties) for these components are p3, p4, p5, p6, and p7. Moving up the tree means that components are integrated
into subsystems either in parallel or in series. The subsystem given at node 2 represents components five
through seven being integrated in series. In other words, the probability that a test of the subsystem at node
2 succeeds is p2 = p5p6p7. The subsystem at node one involves nodes 3 and 4 combining in parallel, and
this subsystem succeeds with probability p1 = 1 − (1 − p3)(1 − p4). Finally, the system at node 0 combines
the two subsystems in series, so it succeeds with probability p0 = p1p2 = {1 − (1 − p3)(1 − p4)}p5p6p7.
We may have test data at any node, and the probability that a test of node i succeeds is pi. We may
also have expert opinion about the reliability of any node, and we interpret this as if it were data: i.e. we
translate the statement that an expert believes node i to have a beta distribution with parameters νg(i)p̃h(i)

and νg(i)(1 − p̃h(i)) into p̃h(i) successes in νg(i) binomial trials with success probability pi. If desired, the
p̃’s and ν’s can be given prior distributions, and this has some advantages; see the Johnson et al paper. It
is important to node that the pi for the leaf nodes (components) constitute parameters of the model, but
the other pi are simply functions of these parameters. In particular, when we incorporate expert opinion on
a non-leaf node, we do so by including the appropriate function of the leaf reliabilities in the place of the
binomial success probability.

The GenericSPSystem class4 facilitates analysis of most problems of this form in which components
and subsystems are combined in parallel to form a system. A restriction is that the system must be tree-
structured, i.e. one component cannot contribute to more than one subsystem. The first unusual code
in this example is the definition of system, an instance of the class ReliableSystem. This line simply

4The class is named after a predecessor called GenericSeriesSystem, and the new class also handles components integrated

in parallel.

22

constructs an empty system with the appropriate number of nodes. The next line reads the graph structure
from the file components.dat, a file that contains the parents of the nodes in the graph in an integer column
called ’parents’: here the parent of a node is the node that represents the larger subsystem that it is a part
of. The ’gate’ column indicates whether the subsystem is obtained by a parallel (gate ≤ 0) or series (gate
> 0) integrator. The first bond in the system incorporates the test data. The interesting ArgumentMaker is
obtained by a method fillProbs of the ReliableSystem class. The function of this method is to take the
values of p3, p4, p5, p6, and p7 as input and return an array consisting of ({1−(1−p3)(1−p4)}p5p6p7, {1−(1−
p3)(1 − p4)}, p5p6p7, p3, p4, p5, p6, p7). We also use this ArgumentMaker in the second bond that represents
the expert opinion: the vector of all the pi’s are treated as coming from Beta distributions with parameters
νp̃ + 1 and ν(1 − p̃) + 1, which is equivalent to incorporating them as binomial data. The p parameter was
defined as a LogitMCMCParameter so that its components are updated on a logit scale, and this choice leads
to acceptable mixing for all the unknown parameters.

5 License agreement

YADAS is c©Copyright 2003 by Todd L. Graves. This software is covered under the “Artistic License” as
given by the Open Source Initiative; see http://www.opensource.org/.

23

